Question Number	Acceptable Answers	Reject	Mark
1(a)	$\overline{\bigcirc}$		1
	Drawing must have at least 1 circle around each chlorine atom		
	OR		
	CICC		
	Random dots to indicate electron density around both chlorine atoms and a		
	concentrated area between the atoms		

Question Number	Acceptable Answers	Reject	Mark
1(b)	(Electrostatic) attraction between oppositely charged ions		1
	IGNORE comments on the formation of ions		

Question Number	Acceptable Answers	Reject	Mark
1 (c)	arking point 1 Either		3
	Diagram of U-tube / beaker with electrodes and sodium chloride solution	Sodium electrode	
	OR		
	Diagram of microscope slide with electrodes attached and either filter paper soaked in sodium chloride solution or dampened/wet filter paper on the top of the slide with the sample added (in the		
	centre) (1)		
	Marking point 2Suitable circuit(1)		
	If electrodes labelled ± or named they must be consistent with the cell For example the following would not score this marking point:		
	Callhade Of OAroule		
	Marking point 3 Ammeter/ light bulb showing conductivity OR Chlorine (gas) evolved/ Test for chlorine/hydrogen (gas) evolved/Test for hydrogen (1)	Sodium formed	
	ALLOW any other reasonable electrolysis apparatus that would work to show ionic bonding.		
	For MP3 if the electrode at which the gas is		

evolved is stated then it must have the correct sign or charge, although it is not necessary to name or give a sign for the electrode, ie chlorine at the electrode with a positive sign and hydrogen at the electrode with a negative sign.	
Use of other ionic compounds can only score MP2	

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)	Correct dot and cross diagram with charge Example XX – XX CI X• XX ZI X• ALLOW all dots or all crosses IGNORE any sodium dot and cross diagram		1

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	(Isoelectronic example) S ²⁻ /S ⁻² /P ³⁻ /P ⁻³	Si ⁴⁻ /K ⁺ /Ca ²⁺ /Ar	1

Question Number	Acceptable Answers	Reject	Mark
1 1 (e)	arking point 1 Sodium conducts when solid (and liquid/molten) (1)	Sodium in solution/dissolved	3
	Marking point 2Sodium chloride conducts when molten (and in solution but not as a solid)(1)		
	Marking point 3 Charge carriers in sodium are (delocalised) electrons but ions in sodium chloride		
	OR		
	Conductivity in sodium due to the movement of (delocalised) electrons but the movement of ions in sodium chloride (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	 (i) ucture Lattice /close-packed (1) (or a diagram with at least 3 rows) positive ions or cations (allow metal ions) (1) delocalized electrons / sea of electrons (1) (ii) Bon (Electrostatic) attraction between positive ions / cations (allow metal ions) and delocalized electrons / sea of electrons (1) 	layers protons 'free' electrons	4

Question Number	Acceptable Answers	Reject	Mark
2 (b)	Any three from		3
	 Magnesium ion / Mg²⁺ (allow magnesium) has a larger charge (density) than the sodium ion (allow sodium) / Na⁺ some comparison of the ions is required (1) 	Just Mg ²⁺ and Na ⁺	
	 magnesium ions / Mg²⁺ smaller than sodium ions (1) 		
	 Magnesium / Mg²⁺ contributes two / more electrons (per atom) to the "sea" of electrons (1) 		
	 4. magnesium ions / Mg²⁺ have greater attraction for the delocalized "sea" of electrons (1) 	More bonds	
	Ignore reference to number of outer electrons in Mg / Na Any references to the bonding being ionic, covalent or intermolecular (max 2)		
	Reverse argument can gain full marks		

Question Number	Acceptable Answers	Reject	Mark
2 (c)	The delocalized electrons / sea of electrons (1)	'free' electrons	2
	Flow (allow move / free to move) (1) (When a potential difference/voltage is applied)		
	'Carry the current' is not sufficient for the mark		

Question	Acceptable Answers	Reject	Mark
Number			
3(a)	First mark: Diagram showing U-tube OR filter paper on a microscope slide OR electrodes in a beaker OR other feasible set-up such as bridge Up		4
	NOTES If set-up in the picture above is used, in addition to the + and — signs a bridge between the two beakers must also be shown. External circuits do not have to be complete (e.g. wires can be shown attached to a slide, provided the + and — labels included).		
	If the words cathode and/or anode are included, for the first mark to be awarded the cathode must be shown as —ve and/or the anode as +ve		
	If a battery symbol		
	shown, IGNORE any incorrect polarities, that is		
	+		
	IGNORE any electrode materials EXCEPT Cu ²⁺ and/or CrO ₄ ²⁻ (1)		

Second mark: Description to include the idea that the ions move/ions are mobile/ions migrate MUST BE IN WORDS	Just ions are attracted to the electrodes of opposite charge
ALLOW if description focuses on the movement of one of the ions to the oppositely-charged electrode (1)	
Third mark: Yellow ion/yellow (colour)/CrO42- moves towards the/+ve (electrode)/ anodeanode(1)	
Fourth mark: Blue ion/blue (colour)/Cu ²⁺ moves towards cathode /—ve (electrode) (1)	
Mark CQ on candidate's cathode and anode signs for the 3rd and 4th marks	

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	(Forces of attraction between) oppositely-charged ions/positive and negative ions/cations and anions IGNORE comments about electron transfer	Just ionic bonds/ Just "electrostatic forces of attraction"	1

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	First mark: Ions of the same charge (repel)/ positive ions (repel)/negative ions (repel) (1) Second mark: Nuclei (of the ions repel) ALLOW	" Magnetic repulsion" negates first mark	2
	 'protons' (in the ions repel) OR Electron clouds OR electrons (in the ions repel) (1) 	"Electrons repel nuclei"	

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	Mg ²⁺ (g) (1) O ²⁻ (g) (1) Penalise missing /incorrect state symbols once only		2
	Max 1 if include "2e ⁻ "		

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	(A is enthalpy change of) formation (of MgO) (1) ALLOW just " $\Delta H_f''$ ALLOW (enthalpy change of) combustion of magnesium	"(enthalpy change of) reaction "	2
	(C is) (sum of) first plus second ionization energies (of Mg) / $IE_1 + IE_2$ (for Mg) (1)	Just "ionization energy"/ "second ionization energy" (of Mg)	
	ALLOW "first and second ionization energies (of Mg)"		
	IGNORE references to "standard"		

Question Number	Acceptable Answers	Reject	Mark
3(c)(iii)	 (F =) A - B - C - D - E NOTE: These letters may be in any order, but the signs MUST be correct ALLOW answers when the enthalpy changes are identified correctly in words or symbols in lieu of the letters 		1

Question Number	Acceptable Answers		Reject	Mark
3(d)(i)	First mark: Mg ²⁺ AND O ²⁻ higher charge / Mg ²⁺ AND O ²⁻ higher charge density (than Mg ⁺ and O ⁻) NOTE: both ions needed	(1)	Any mention of 'intermolecular forces' scores (0) overall for this question	2
	Second mark: Mg ²⁺ smaller (than Mg ⁺) IGNORE comparisons of the rel sizes of O ⁻ with O ²⁻ even if	(1) ative		
	INCORRECT IGNORE any references to polarization (of ions) and/or covalent character			

Question Number	Acceptable Answers	Reject	Mark
3(d)(ii)	(Lattice energy of Mg ²⁺ O ²⁻ is) more exothermic/more negative ALLOW greater/increased/higher/ more/larger/bigger IGNORE "stronger lattice"	"energy required " OR Lower/less/ smaller	1

Question Number	Acceptable Answers	Reject	Mark
4 (a)	(1s ² 2s ²) 2p ⁶ 3s ² 3p ⁵ (ignore repetition of 1s ² 2s ²)	287	1
	ALLOW subscripts, correct use of p_x , p_y and p_z orbitals or normal font for electrons		

Question Number	Acceptable Answers	Reject	Mark
4 (b) (i)	XX CI XX Mg ²⁺ XX CI XX CI XX	Covalent bonding (0)	2
	Correct number of outer electrons (ignore whether dots and / or crosses) drawn and also ratio of magnesium : chloride ions is 1:2 (1)	Incorrect numbers of electrons in inner shells if drawn for first mark	
	Correct formulae and charges of the ions shown somewhere (1)	"MG ²⁺ " and/or "CL ⁻ " for second mark	
	NOTE : Diagram for Mg ²⁺ showing the outermost shell with 8e ⁻ (dots and/or crosses) and/or Cl ⁻ shown with a 2 in front or 2 as a subscript would also score both marks		
	Mark the two points independently		

Question Number	Acceptable Answers		Reject	Mark
4 (b) (ii)	4 shared pairs of electrons around the carbon labelled C	(4)	lonic bonding (0)	2
		(1)		
	ALL outer electrons, including lone pairs, are correctly shown on each of the four chlorine atoms labelled Cl			
		(1)		
	ALLOW versions without circles			
	IGNORE lines between the shared electrons			
	Mark two points independently			

Question Number	Acceptable Answers	Reject	Mark
4 (b) (iii)	(Comparison of) charges: O ²⁻ ions whereas Cl ⁻ ions OR Statement to the effect that oxide ion has a greater (negative) charge / greater charge density than the chloride ion (1) (so the force of) attraction between ions is stronger in MgO (than MgCl ₂) / stronger ionic bonding in MgO (than MgCl ₂) (1)	Use of term chlorine and/or oxygen "atoms" or "molecules" (0) f answer overall	3
	More energy is required to separate the ions in MgO (than MgCl ₂) / more energy is required to break (ionic) bonds in MgO (than MgCl ₂) / (1) Mark the above three points independently NOTE ALTERNATIVE ANSWER WITH A MAXIMUM OF TWO MARKS:-	"More bonds need to be broken"	
	 O²⁻ (ions) smaller (than Cl⁻ ions) (1) so (force of) attraction between ions is stronger in MgO (than MgCl₂) /stronger ionic bonding in MgO (than MgCl₂) (1) Ignore ANY references to polarization of ions / covalent character / degree of covalency. Mark the above two points independently 	(0) f answer overall if mentions "intermolecular forces"	

Question Number	Acceptable Answers	Reject	Mark
4 (c)	First Mark:		2
	<i>EITHER</i> Magnesium reacts with chlorine to form only magnesium chloride/		
	magnesium reacts with chlorine to form only one product /		
	magnesium reacts with hydrochloric acid to form hydrogen (as well as magnesium chloride) /		
	magnesium reacts with hydrochloric acid to form more than one product /		
	magnesium reacts with hydrochloric acid to form a waste product		
	OR		
	Both equations Mg + $CI_2 \rightarrow MgCI_2$ and Mg + 2HCI $\rightarrow MgCI_2 + H_2$		
	IGNORE state symbols, even if incorrect (1)		
	Second Mark:		
	<i>EITHER</i> The reaction with chlorine has an atom economy which is higher /100%		
	ALLOW "high"		
	OR		
	Any mention of numbers comparing 100 % v. 97.9% (1)		
	IGNORE any comments about yield		
	Mark the two points independently		